Get a link to read and download your free copy of our eBook here!
Chapter
3
Understanding Market & Product Needs
After product requirements get passed through user research and business development teams, engineering teams are responsible for assessing feasibility and practicality. They also determine the best approach in order to meet as many success criteria as possible. It’s important to acknowledge that the technologies used—from the edge to the cloud—all have trade-offs that affect the cost, accuracy, and responsiveness of a system. In this section, we will take you through the primary considerations in architecting an indoor asset tracking solution.
All indoor positioning solutions rely on one or several core technologies to provide accurate real-time location data. Some examples, which we’ve discussed previously, include Bluetooth Low Energy (BLE), Ultrasonic, and RFID. Each of these has specific tradeoffs that dictate features such as signal range and penetration, which are important considerations when devising a solution for particular use cases.
In addition to the core tracking technologies, indoor positioning solutions may be aided by supplementary data from sensors, such as accelerometers, gyroscopes, magnetometers, and environmental sensors. The first three (accelerometers, gyroscopes, and magnetometers) can be used to estimate position through dead reckoning, which may be valuable in scenarios where precise tracking in complex environments is needed. On the other hand, environmental sensors, such as those that monitor temperature, air pressure, and humidity, can be used to determine details such as what floor someone is on, or where in a given space someone might be located.
Once you have determined which technologies to use and what data to collect, you need to decide on how you plan to transmit that data to the cloud. Depending on the volume of data being collected, there are two options:
This is typically achieved through gateway devices that communicate via LoRa or WiFi to the cloud. It’s also possible to stream data from each node or sensor device directly to the cloud; however, this may overload the IT infrastructure or fail in crowded environments such as shopping malls.
Finally, you need to determine how to translate raw data into meaningful position information. There are three things that must be built to achieve this transformation:
Raw data tends to be noisy. It requires some degree of processing before it’s usable. What filtering and data transformation are needed? A good measurement engine is key to accurate positioning.
How will you determine location? What level of accuracy is required? How complex is the algorithm, and will it be affected by hardware limitations (e.g. smartphones or gateway devices)?
What is being tracked, and where is it being tracked? How will location be visualized for the user? What level of interactivity is required?
Sometimes, despite all prior considerations, there are things that consistently emerge as pain points in system deployment. Here are some that industry experts see often and work hard to anticipate:
It’s cheaper to do it right the first time. This highlights the importance of good research to understand what the requirements and needs are of the use case.
The “full-stack” for indoor positioning systems spans multiple technical fields—from hardware and firmware engineering, to cloud solutions architecture and data science, to front-end design and development. The considerations discussed here should be used as a guide and a tool when exploring approaches to building an indoor positioning solution.